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LETTER TO THE EDITOR 

Collective behaviour in one-dimensional locally coupled map 
lattices 

P-M Binder and V Privmant 
Theoretical Physics, Univenity of Oxford, 1 Keble Road, Oxford OX1 3NP. UK 

Received 18 Feblualy 1992, in final form 29 April 1992 

AbsIracL We observe true and quasiperiod-4 collective evolution of average values in 
one-dimensional lattices of logistic maps with vanable coupling range. The phenomenon 
appean to k quite prevalent for local coupling kyand nearest neighbun. We find 
that in one dimension it Is easy to visualize the structure of the four (quasi)states; these 
appear to k quite stable to disturbances such as domain reversals. 

Collective behaviour of spatially coupled, strongly nonlinear systems has attracted 
recent interest. Indeed, droplet-type arguments by Bennett a a/ (1990) seemed 
to suggest that the allowed patterns of stable collective states in two- and higher- 
dimensional models are rather limited. Recent numerical evidence by Chat6 and 
Manneville (1991, 1992a, b), however, established cases of quasiperiodicity-3 and 
other similar collective states in certain high-dimensional (d = 4 , 5 )  deterministic 
cellular automata. These collective effects were inconsistent with the ‘droplet’ ideas. 
No phenomenological or analytical theory of such collective states is available to 
date. Further numerical effort has concentrated on systematic studies of such higher- 
dimensional models, including stability to noise and perturbations, sensitivity to initial 
conditions, and, to the extent it is quantifiable, the universality of the observed 
patterns of self-organization; see Gallas ef a/ (1991, 1992). A similar pattern of 
behaviour in three dimensions was found and studied by Hemmingsson (1991). 

Emergence of collective behaviour in high-dimensional coupled-map lattices has 
also been established recently, by Chat6 and Manneville (1992a, b). Many aspects of 
the patterns observed and their classification were similar to those found earlier for 
discrete-spin cellular automata. The emphasis in both cellular automata and coupled- 
lattice work by Chat6 and Manneville (1991, 1992a, b) was on the competition between 
the tendency to disorder in complex dynamical systems with short-range couplings, 
and the mean-field-like tendency to uniform behaviour typical of high-dimensional 
models. Thus, collective effects were sought in high dimensions. It was realized, 
however, that the actual pattern of the return map of the order parameter, studied 
extensively by Chat6 and Manneville (1991) and Gallas el al (1991, 1992) for the 
cellular automata case, was only loosely, if at all, related to the features of the 
mean-field map. 

t On leave of absence from Department of Physics, Clarkson University, Potsdam. New York 13699-5820, 
USA. 
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In this letter we consider instead one-dimensional lattices of logistic equations in 
which the range of coupling is allowed to vary. The idea of scaling range with system 
size has been used recently (Owczarek el al 1992) to find the necessary conditions 
for ordering in one-dimensional spin systems. As interaction range increases, models 
in one dimension may have the mean-field tendency to uniformity, even for a fixed 
coupling range. Coupled map lattices in one dimension were studied extensively for 
nearest-neighbour couplings (Crutchfield and Kaneko 1988, Kaneko 1989a, b, 1990). 
Quasiperiodic states with periods near 2, 4, and 8 were noted for some parameter 
values (Kaneko 1989b, 1990). However, the emphasis of the previous studies was on 
quantifying chaotic behaviour. 

The main finding of this letter is the existence of periodic and quasiperiodic (in 
the sense of periodic with irrational period) collective behaviour in such lattices, 
which seems to be attributable to the interplay of uniformizing mean-field averaging 
as the coupling range increases, with the randomizing effect of the logistic map in 
the parameter range of chaotic behaviour of the latter. The advantages of the one 
dimensional systems with variable coupling range are: (1) the system must become 
mean-field when the coupling range is of the order of the system size, and (2) the 
spatial structure (if any) of the (quasi)ordered states and the recovery of disturbances 
are easier to visualize than in higher dimensions. A difference is of course that 
the droplet arguments are not relevant to one dimension. However, recent d > 1 
studies put such arguments in question anyway. Furthermore, the observed self- 
organized states in one dimension seem spatially ordered (see below) whereas the 
high-d collective states were disordered to the extent this property could be quantified 
by studying lowerdimensional cross-sections. Another difference is that, at least for 
the smaller lattice sizes considered in this letter, we do not find ‘thermodynamic’ 
noise like that observed in higher dimensions. 

The evolution rule for the system of L maps arranged in a periodic linear array 
is as follows. Successive averaging and iterating steps are taken. First, the local 
variables zi, ranging between zero and .one, are averaged over P neighbours from 
both sides according to 

Next, each locally-averaged value is iterated with the well known logistic map by 

We now define a collective order-parameter variable by 

r. 

Simulations for a number of lattice sizes L, coupling ranges r, nonlinearity parameters 
a and initial conditions have been performed. We first describe typical results before 
concentrating on a specific set of parameters. 

From (1)-(3), one deduces that the behaviour of maps coupled with r = ( L / 2 ) - 1  
is exactly mean-field, and should therefore coincide with the behaviour of a single 
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logistic map in every respect: the timeevolution of the system, the longtime d u e s  
and distributions of X ( t ) ,  and the form of the return map X ( t  + 1) versus X ( t ) .  
The long-time distribution of iterates of z (often plotted versus a and known as a 
bifurcation diagram) is well known for a single map (see Grossmann and Thomae 
1977, Berg6 et af 1984). 

One sees indeed that as T increases the bifurcation diagram (in the range of 
interest 3 < Q < 4) approaches that of a single map; it does so fairly systematically 
for the lower range of a, but the behaviour for a > 3.6 changes somewhat erratically 
up to T - L/4 .  For larger T the bifurcation diagram appears to be identical to the 
single-map diagram for all a. 

A systematic search over the parameter space of (a, L ,  T )  would be unfeasible. 
We now describe in detail a particular example of (quasi)periodic behaviour, followed 
by a discussion of how prevalent these phenomena are. 
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Figure 1. Long-lime i lerale~ of qualions (1). (2) with L = 81. r = 4 vemus nonlinearity 
parameler a: delail for 3 . 7 2  < (I < 3.84. 

The case we consider in detail corresponds to L = 81,  r = 4. Figure 1 corre- 
sponds in particular to parameter values 3.72 < U < 3.84. Return maps X(t + 1) 
versus X ( 1 )  yield noisy versions of the parabola (2) for wlues such as a = 3.91, 
and therefore correspond more or less to the mean-field limit. The more interesting 
cases correspond to the transition values between fixed points and period-4 cycles as 
seen in figure 1: the return map of .Y for a = 3.78 is given in figure 2 

The quasiperiodic behaviour of the map for a = 3.78  is quite evident; its nearest 
integer period has been investigated with the 'polar' variable 0, introduced by Chat6 
and Manneville (1991), a measure of the angular position of a point in the return 
map trajectory with respect to an arbitrary point near the centre of this trajectory. A 
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Flgurc 2 Return map X ( t +  1) venw S ( t )  lor L = 81, r = 4 and (1 = 3.78; limes 
shown are 997000 < t 6 i n n n o o o .  

plot gives four distinct blobs more or less coincident with the line @ I t 4  = 8' .  This 
confirms the quasiperiod-4 nature of the system. For a > 3.782 the return map for 
X collapses to four points. 

The spatial structure of the (quasi)periodic states is easy to visualize. We show 
in figure 3 the values zi versus i for four consecutive time steps. The parameter 
values are the same as for figure 2 Each global state consists of smoothly varying 
values z,, forming three oscillating domains of width 27 each, which move by half 
a wavelength after each time step, reminiscent of those reported in globally coupled 
map lattices (Kaneko 1986), where no quasiperiodic behaviour was reported. These 
repeat following the same sequence, exactly in the periodic case and almost exactly in 
the quasiperiodic case. The long-time average of each of the four states is also quite 
well-defined, consisting of an almost perfect sinusoid of wavelength 27 sites, average 
value 0.68 and amplitude 0.04. 

A few remarks are in order for this quasipcriodic trajectory: (1) it seems to 
be quite independent of the initial condition; (2) the times considered are of order 
lo6 time steps, as 1 >> L2 we believe that this is no1 a transient phenomenon; (3) 
the long-time states are considerably stable to major disturbances. For instance, we 
took 27 sites of one of the states depicted in ligure 3, and replaccd them with the 
(antinodal) values corresponding to the previous time step; the system healed to its 
original state after about 500 time steps. 

We discuss now the prevalence of this phenomenon. Hrst of all, for any pair 
(L, T )  it is localized over a very narrow window of R, as exemplified in figure 1. 
Therefore, it is quite easy to miss it. For L = 81 we observed it for values T = 
7, 12, 13, 14. We also observed it for lattice sizes of 100 (T = l G ) ,  107 (T = 9). 128 
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Figure 3. Long-lime wlues of far four mnsecutive h e  steps. superimposed; pa- 
rameler values Same as in previous figure. Quasiperiodic khaviour slmclures almost 
repeal. Periodic khaviour structures repeat txac~ly.  

(T = 17). 243 ( T = 6), and for lattices as large as L = 20 000. It always seems to 
happen during a forward fixed-point to period-4 transition; the corresponding d u e s  
of a are quite variable, between 3.7 and 3.9. We believe that the quasiperiodic 
behaviour is caused by a delicate interplay between the trajectory-separating tendency 

Finally, only for large enough lattices ( L  - 1000) does thermodynamic-like noise 
appear. 

As remarked in the introductory discussion, there is no evidence to suggest that 
the collective states observed in one dimension are similar to those found in higher- 
dimensional models. In fact, the competition between the mean-field averaging and 

that can be identified at this stage. Our large-size results indicate that, while deter- 
ministic ‘noise’ appears, collective soliton-like states in one dimension persist in the 
‘thermodynamic limit’. Therefore, the disordered (in space) pattern of the higher-d 
collective states is not shared by the one-dimensional models. 

In summary, in this letter we have reported a numerical exploration of the be- 
haviour of a one-dimensional array of nonlinear maps! in which the range of mupling 
is allowed to vary up to mean-field. The 'route' to mean-field is therefore different 
than that explored by previous authors. We observe collective periodic and quasiperi- 
odic behaviour, which seems to be present for coupling ranges greater than one but 
smaller than - L / 4 .  The quasiperiod-4 behaviour usually happens during a fonvard 
transition from fixed point to period 4, and the d u e s  of U at which quasiperiodic be- 
haviour happens are fairly narrow, indicating a delicate balance between the averaging 
effect of the coupling and the randomizing effect of the chaotic maps. 

One of the advantages of a one-dimensional model is that the Structure of the 
(quasi)ordered states can be easily visualized, as in figure 3. An interesting feature is 
that the collective states appear to be formed from well-defined, oscilIating domains. 
?hi is different from the disorder seen in higher dimensional systems. While the rela- 

of the ~ i i i g k  i i i ~ p  (2) foi mitaiii ~h’ilaotii va:iizs of a, 2nd the effect ~f ~ ~ e i a p i n g  e). 

the !OgiitiC E S P  tendecq fnr chaotic spread i!! v2!.es, b the. an!)’ cmnmn!! featfire 
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tion between the phenomena observed here and those observed in higher dimensions 
is not clear, our results suggest that cooperative behaviour may be caused not only by 
conventional thermodynamic phases, but also by coherent soliton-like structures. It 
should be mentioned that Kaneko (1990) has observed soliton-like propagating waves 
for maps with nearest-neighbour ‘antiferromagnetic’ coupling. 

Both the similarities and differences with higher-dimensional models should be 
helpful in understanding in a unified manner how collective behaviour arises. 

This research was supported by the Science and Engineering Research Council (UK). 
One of the authors (W) also wishes to acknowledge the award or a Guest Research 
Fellowship at Oxford from the Royal Society. 
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